gaitFORCE Portable Gait Analyzer

AMT

Advanced Motion Technologies, Inc.

Virtual Athletic Training (Current Focus)

Problem

For the runner:

- Pedometers are inaccurate
- ◆ GPS solutions are expensive
- ◆ Neither provides body movement data

For the shoe manufacturer:

- ◆ Current training devices work with any shoe
- ◆ There is less brand loyalty

Solution

For the runner:

- Increased accuracy compared to a pedometer
- ◆ Lower cost than a GPS
- Motion related data: stride length, contact force, etc. For the shoe manufacturer:
- ◆ Device will only work with approved shoe
- ◆ Increased brand loyalty and market share

(Illustrative mockup: Garmin and Alberto Salazar do not endorse this product)

Market Data

- ♦ U.S. Running shoe market: \$2.5 billion (2008)
- ◆ Nike's market share jumped from 48% to 61% in the two years after the release of the Nike+ Sports Kit
- ♦ 450,000 Nike+ Sports Kits were sold in the first 2 months
- ♦ 3,000,000 Nike+ Shoes were sold in the first 5 months
- ◆ 40% of Nike+ users convert to Nike brand running shoes

Competition

Features	gaitFORCE	Nike+	GPS
Distance, Speed	1	V	~
Calories Burned	1	1	1
Stride Length, Stride Rate	1		
Incline Grade	¥		
Contact Time, Contact Force	4		
Shoe Rotation, Wear Out Detection	1		
Effort Level	· /		
Heel Strike vs Mid-foot	V		
High Accuracy Over Distance, Map Route			1
Low Power Consumption		V	
Low Cost		1	
Can be Used with Any Shoe			V

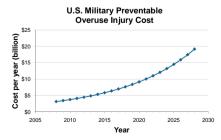
Strategy

Stage 1a: Build a prototype with the assistance of Dr. Bamberg and Synapse Product Development

Stage 1b: Develop implementation strategy with cost assumptions and financial projections

Stage 2: Use industry connections through Synapse to shop around the prototype for licensing or acquisition

Injury Prevention (Future Markets)


Problem

Preventable overuse injuries force U.S. Military soldiers to go on inactive duty and sideline professional athletes

Solution

By monitoring critical gait factors, **gaitFORCE** will:

- ◆ Assist in preventing overuse injuries
- Monitor and assist in injury rehabilitation
- ◆ Monitor and enhance performance

- ◆ 14.2% of U.S. Military personnel suffer a foot, ankle, or knee overuse injury per year
- ◆ Each injury averages 11 days of inactive duty
- ◆ Cost to U.S. government \$1.84 billion in lost time and \$1.30 billion in medical expenses in 2008
- ◆ Costs increase per year: 10.8% lost time, 6.8% medical

Soccer

David Beckham • Failed recovery after

- ankle injury
 7 missed games
- \$2.52 million cost

Kobe Bryant

- Plantar fasciitis
- 5 missed games
- \$1.188 million cost

Grant Hill

- Overuse ankle injury
- 281 missed games
 \$39.282 million cost

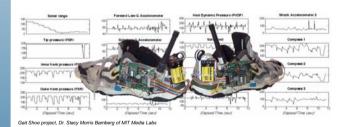
Wally Szczerbiak

- Plantar fasciitis
 53 missed games
- \$5.17 million cost

gaitFORCE Technology

- MEMs gyro rate sensors and accelerometers
 Measures shoe motion in all three planes
- ◆ Removable components

 Does not require large investment when shoes wear out
- ◆ Transmit data wirelessly


 Data can be analyzed in real-time

 Or stored for post-processing
- ◆ Expandable system components

 Pressure pads and additional motion sensors

 For more medically relevant data
- ◆ US Patent No. 6,836,744

 Portable system for analyzing human gait Sole assignee: AMT, Inc.
- ◆ Component cost under \$45 3-axis accelerometer (\$5x2); 1-axis gyroscope (\$9x2); PIC controller (\$1x3); telemetry (\$2.5x3); battery (\$2x2); casing, etc. (~\$2)

AMT Team

Core Founders

Science Advisory Board

AMT thanks our sponsors...

ziz Asphahani